
  
Abstract—In this paper, a kind of quadratic polynomial surjective 

map (QPSM) is constructed, and the topological conjugation of the 
QPSM and tent map is proven. With the probability density function 
(PDF) of the QPSM being deduced, an anti-trigonometric transform 
function is proposed to homogenize the QPSM. The information 
entropy, Kolmogorov entropy (KE), and discrete entropy (DE) of the 
QPSM are calculated for both the original and homogenized maps 
with respect to different parameters. Simulation results show that the 
information entropy of the homogenized sequence is close to the 
theoretical limit and the discrete entropy remains unchanged, which 
suggest that the homogenization method is effective. Thus, the 
homogenized map not only inherits the diverse properties of the 
original QPSM but also possesses better uniformity. These features 
make it more suitable to secure communication and noise radar. 

Keywords—chaotic map, entropy, topological conjugation, 
homogenization. 

I. INTRODUCTION 
HAOS is seemingly random and irregular movement that 
occurs in a deterministic system without any random 

factors [1]–[3]. As a new science, chaology is usually thought to 
have begun with the publication of “Period three implies chaos” 
by Li and Yorke in 1975 [4], which is the first use of “chaos” as 
scientific terminology. As a complex dynamic phenomenon in a 
nonlinear system, chaos exists throughout nature. Because of its 
complex behaviour, chaos has attracted great interest from 
scholars in various fields [5]–[8].  

Because of ergodicity and mixing [9], chaos can be 
characterized by methods of probability and statistics. That is, 
the probability density function (PDF) of a chaotic map can be 
used to analysis the properties of chaos. So far, however, only a 
few simple chaotic maps have known PDFs [10], [11]. 
Reference [12] demonstrated that the logistic map and 
Chebyshev map are topologically conjugate to the tent map and 
presented PDFs of the logistic and Chebyshev maps. Producing 
chaotic sequences with good uniformity and randomness is a 
very important subject [13–[15]. At present, there are many 
ways to transform chaotic sequences into uniformly and 

The research was supported in part by the National Natural Science 
Foundation of China under Grant 61471012, in part by the Open-End Fund of 
BITTT Key Laboratory of Space Object Measurement. 

Jun Tang is with the School of Information Science and engineering, 
Xiamen University, Xiamen, China (corresponding author to provide e-mail: 
jtang@xmut.edu.cn).  

Jianghong Shi is with the School of Information Science and engineering, 
Xiamen University, Xiamen, China (e-mail: shijh@xmu.edu.cn). 

randomly distributed sequences [16]–[18]. 
In this paper, we deduce the relationships between the 

coefficients of a quadratic polynomial surjective map (QPSM) 
and prove the topological conjugacy of the QPSM and tent map. 
We give the PDF of the QPSM, which is then used to design a 
transform function to homogenize the QPSM sequence. Finally, 
we estimate entropies of the QPSM such as the information, 
Kolmogorov, and discrete entropies for both the original and 
homogenized map. 

This paper is organized as follows. Section II presents a 
method for determining the QPSM coefficients, and the 
topological conjugation of the QPSM and tent map is proven. 
Section III gives the derivation for the PDF of the QPSM and 
presents a homogenization method. Section IV presents an 
analysis on the statistical and chaos characteristics of the QPSM 
and the results of some simulations. Finally, Section V 
concludes the paper. 

II. THE CONSTRUCTION OF THE QPSM 

A. The Relationships between the Coefficients of the QPSM 
Reference [19] proposed an equivalent proposition for the 

determination of period-3 points of a real coefficient 
polynomial by decomposing it into a complex field and 
presented a necessary and sufficient condition of determining 
period-3 points of a quadratic polynomial. 

Lemma 2.1 [19]: The necessary and sufficient condition of 
determination 3-periodic points of a quadratic polynomial map 

( ) 2 , 0f x ax bx c a= + + ≠  is 

 2 4 2 7b ac b− − ≥  (1) 
If the quadratic polynomial is a surjective map, we can further 

conclude the following: 
i. One of the fixed points *x  of f  is the boundary of the 

map interval I ; 
ii. Let ( ),c cx y  be the vertex coordinate of f ; then, 

( ) *
cf y x=  should hold. 

Without loss of generality, if we suppose 0a < , then we can 
obtain the following equation according to the above 
conditions: 
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( )

( )( )2

* *

*4 / 4

x f

ac b

x

f xa

 =


=−
 (2) 

By solving the above equation, we can get one fixed point 

( )* 2 4 2 1 1 / 2x b ac b b a= − − + − +  and ( )2 2 8 / 4c b b a= − − . 

In this case of 2 4 2 8b ac b− − ≡ , the condition of lemma 2.1 is 
met. Therefore, the QPSM is chaotic, and its map interval is 

( ) ( )4 / 2 , 4 / 2I b a b a= − − +   . Thus, the QPSM can be 

expressed as 

 ( ) ( )2 4 4, , ,
2 2

b bf x ax bx c a b x
a a

− − − = + + ∈   
 (3) 

where ( ) ( )2, 2 8 / 4c a b b b a= − − . 

B. Topological Conjugation of the QPSM 
In order to prove that Eq. (3) is topologically conjugate to the 

tent map, we first introduce the definition of a topological 
conjugation. 

Definition 2.2 [20] (Topological Conjugation): Two maps 
:f I I→  and :g J J→  are topological conjugate if there 

exists a homeomorphism :h I J→  such that 
 h f g h=   (4) 

Lemma 2.3: The QPSM ( ) ( )2 ,f x ax bx c a b= + +  is 
topologically conjugate to the tent map. 

Proof: The tent map is given by 

 ( )
12 , 0
2

12 2 , 1
2

x x
g x

x x

 ≤ ≤= 
 − ≤ ≤


 (5) 

Let ( ) ( ) [ ]1 2cos , 0,1h x k x k xπ= + ∈ . Obviously, ( )h x  is a 
continuous and reversible function. 

According to definition 2.2, 

 

( )( )
( )

( )

( )
( )

1 2

1 2

1 2
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2

1cos 2 2 , 1
2

cos 2

2

k x k x
h g x

k x k x

k x k

h x

π

π π

π

 + ≤ ≤= 
 − + ≤ ≤


= +

=

 (6) 

On the other hand, 
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f h x ah x bh x c a b

a k x k

b k x k c a b

a k x k k k x

bk x bk c a b

x
a k k k k x

bk x bk c a b

π

π

π π

π

π
π

π

= + +

= +  
  + + +  

 = + + 
  + + +

+ 
= + + + 

 
  + +

 (7) 

If we let ( )( ) ( )2f h x h x= , we get 

 
1

2

2

2

k
a

bk
a

 =

 = −


 

In other words, when ( ) ( ) ( ) [ ]2cos / / 2 , 0,1h x x a b a xπ= − ∈ , 

( )( ) ( )( )h g x f h x= . Therefore, ( )f x  and ( )g x  are 

topological conjugacy via ( )h x .  

III. PDF AND HOMOGENIZATION OF THE QPSM 

A. PDF of the QPSM 
Lemma 3.1 [21]: If the maps ( )f x  and ( )g x  are 

topological conjugate via ( )h x  and ( )g xρ  is the PDF of 

( )g x , then the PDF of ( )f x  is 

 ( ) ( )( ) ( )1
1

f g

dh x
x h x

dx
ρ ρ

−
−=  

Theorem 3.2: The PDF of ( ) ( )2 ,f x ax bx c a b= + +  is 

 
2 2 2

16
4 4 16

a

a x abx bπ − − − +
 

Proof: The PDF of the tent map is 
 ( ) ( )1, 0,1T x xρ = ∈  

According to Lemma 3.1, we can obtain 

 ( )1 1 arccos
2 4
a bh x x

π
−  = +  

 

and 

 

( ) ( )( ) ( )1
1

2 2 2

1 arccos
2 41

16
4 4 16

f T

dh x
x h x

dx

a bd x

dx

a

a x abx b

ρ ρ

π

π

−
−=

  +    = ×

=
− − − +

 

Therefore, ( )2 2 216 / 4 4 16a a x abx bπ − − − +  is the PDF of 

( ) ( )2 ,f x ax bx c a b= + + . Obviously, the distribution of the 
sequence produced by Eq. (3) is non-uniform. 

B. Homogenization of the QPSM 
Theorem 3.3: If the PDF of a random variable X  is 
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 ( )

2 2 2

16 ,
4 4 16

4 4
2 2

0, otherwise

X

a
a x abx b

b bx x
a a

π

ρ

−
 − − − +
 − − −

= ≤ ≤





 

then the random variable 

 1 arcsin
2 4
a bZ X

π
 = − − 
 

 (8) 

follows a uniform distribution in the interval [ ]0.5,0.5− . 
 Proof: The PDF of the random variable Z  is 

 

( ) ( )

( )

( )

( )( )2 sin
2

1 arcsin
2 4

sin
2 4

2 sin
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F z P Z z
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bP X z
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x dx
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−∞
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  = − − ≤  
  

 = − − ≤ 
 
 = ≤ − − 
 

= ∫

 (9) 

If the derivation operation is applied to both sides of Eq. (9), 
then we can get the PDF of Z : 
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Therefore, the random variable 1 arcsin
2 4
a bZ x

π
 = − − 
 

 is 

uniformly distributed in [ ]0.5,0.5− . 

IV. THE CHAOTIC CHARACTERISTICS OF THE QPSM 
In this section, we analyse the statistical properties and 

entropy of the QPSM from the perspectives of the statistical 
histogram, information entropy, and discrete entropy. First, 
several definitions of entropy are introduced. 

A. Definitions of Entropy 
Definition 4.1 (Information Entropy): Let { }1 2,s , , nS s s=   

be an information source and ip  be the probability of is  
showing up in S . The information entropy of S  is then defined 
as 

 ( )
1

log
n

i i
i

H S p p
=

= −∑  

When 1/ip n=  for all { }1, ,i n∈  , ( )H S  achieves the 

maximum 2log n . In other words, the maximum entropy 
probability distribution is the uniform distribution. 

Definition 4.2 [22] (Kolmogorov Entropy). Consider the 
trajectory ( ) ( ) ( )1 , , dX t x t x t=     of a dynamical system on a 

strange attractor and suppose that the d -dimensional phase 
space is partitioned into boxes of size dl . The state of the 
system is now measured at intervals of time τ . Let 

0 ni iP


 be the 

joint probability that ( )0X t =  is in box 0i , ( )X t τ=  be the 

joint probability that it is in box 1, ,i  , and ( )X t nτ+  be the 

joint probability that it is in box ni . The K -entropy is defined 
as 

 
0 1 0 1

0 1
0 0 ,

1limlim lim log
N N

N

i i i il N i i
K P P

Nτ τ − −

−
→ → →∞

= − ∑
 



 

For one-dimensional maps, K  is simply the positive Lyapunov 
exponent. 

Definition 4 [23] (Discrete Entropy): Let { }1, , LA a a=   be 
a finite set endowed with a linear ordering ≤ , :F A A→  be a 
bijection, and nSπ ∈ be a permutation on { }0,1, , 1n −  with 
2 n L≤ ≤ . The following is defined: 

 ( ) ( ) ( ){ }0 1: nQ n a A F a F aπ π
π

−= ∈ < <  

and 

 ( ) ( )
( )

nS

Q n
q n

Q n
π

π
τ

τ∈

=
∑

 

Then, the discrete entropy of F  with the order 2n ≥  is defined 
as 

 ( ) ( ) 1 log
1

n

n

S
h F q q

nδ π π
π∈

= −
− ∑  (10) 

The best way to encapsulate the information contained in 
( ) ( ) ( ) ( ) ( ) ( ){ }max2

max, , , max : 0n nh F h F n n h Fδ δ δ= ≠  into a single 

number is by taking its arithmetic mean. We call 

 ( ) ( ) ( )
max

2max

1
1

n
n

n
h F h F

nδ
=

=
− ∑  (11) 

the discrete entropy of F . 

B. Bifurcation Diagrams and Statistical Properties of a 
Quadratic Polynomial Map 
Based on Eq. (12), suppose that 1.8, 2.8a b= − = . Then, 

0.8c = , and we can obtain a specific quadratic polynomial 
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map: 

 
( ) 2

2 1 171.8 2.8 0.8, ,
3 9

f x ax bx c

x x x

= + +

 = − + + ∈ −  

 (13) 

This map evolves chaotic motions through period-doubling 
bifurcation while the system parameters vary. Figs 1(a)–(c) 
show the bifurcation diagrams. 

 

 

 
Fig. 1 bifurcation diagrams: (a) the bifurcation diagram of 
parameter a  in system (12); (b) the bifurcation diagram of 
parameter b  in system (12); (c) the bifurcation diagram of 

parameter c  in system (12) 

C. Statistical Histograms of the QPSM 
The histograms of the sequences generated by both the 

original and homogenized maps are shown in Fig. 2 (a) and (b), 
respectively. The distribution of the homogenized chaotic 
sequence can clearly be observed to be approximately uniform. 
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Fig. 2 histogram: (a) histogram of the sequence before 

uniformity; (b) histogram of the sequence after uniformity. 

D. Entropy of the QPSM 
In order to calculate the information entropy of an ergodic 

sequence with the length of N , we can divide the range of 
values into M  equal intervals and count the number of samples 
that fall into each interval. This is denoted as ( )1,2, ,in i M=  . 
Therefore, the probability of each interval can be considered as 

1
/ , 1

M

i i i
i

p n N p
=

= =∑ . According to the maximum information 

entropy principle, the maximum information entropy is 
2log M . Here, we let 600000N =  and calculate the 

information entropy of the original and homogenized sequences 
for the different M  values. Table 1 lists the results. 

Table. 1 Information and maximum entropies before and 
after uniformity 

( ),N M  Before 
uniformity 

After 
uniformity 

Maximum 
information 

(600000,100) 6.3508 6.6438 6.6439 
(600000,200) 7.3342 7.6437 7.6439 
(600000,300) 7.9124 8.2285 8.2288 
(600000,600) 8.6412 8.9652 8.9658 

For all M  values, the information entropy of the 
homogenized sequence is close to the maximum entropy 

2log M , which suggests that the homogenization method is 
effective. 

The concept of discrete entropy proposed by Kocarev in 
2007 is used to measure the chaotic extent of a sequence by 
considering the permutations of successive ( )2n n ≥  points. In 
this paper, we let 9n = . Then, we can calculate the discrete 
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entropies of the original and homogenized sequences with 
respect to the different coefficients, and compare then with the 
K  entropy. 

Let [ ]1.8,0a ∈ − . The homogenized system can be written as 

 
( ) ( ) ( )

( ) ( )

21 2.8 0.8

11 arcsin
2 4

x n ax x x n

a bz n x n
π

 + = + +

  + = − −  

 

 (14) 

The K  entropies (i.e. positive Lyapunov exponent) and 
discrete entropies of the original and homogenized sequences 
are shown in Figs 3(a) and 3(d). Similarly, let 

[ ] [ ]1.8,2.8 , 0,0.8b c∈ ∈ . Fig. 3 shows the simulation results. As 
shown in Figs 3(a), (b), and (c), the discrete entropy of the 
original sequences approximated the K  entropy with a 
constant offset. To some extent, the discrete entropy can be used 
to measure the chaotic extent of a system. As shown in Figs 
3(d), (e), and (f), the discrete entropies of the original and 
homogenized systems are identical. The simulation results show 
that the uniformity of the distribution of the homogenized 
system was improved with the same chaotic property. 
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Fig. 3(a), (b), (c) K entropy and discrete entropy before 

uniformity; (d), (e), (f) discrete entropy of the before and after 
uniformity 

V. CONCLUSION 
In this paper, we propose a method for determining the 

coefficients of the QPSM and prove that the QPSM is 
topologically conjugate to the tent map. We then derive an 
analytical expression of the PDF of the QPSM and present an 
approach to homogenize the QPSM. The information entropy, 
K  entropy, and discrete entropy of the QPSM were analysed 
and simulated. The theoretical results showed that the 
information entropy was highest for the sequence generated by 
the homogenized system, and the discrete entropy remained the 
same. The simulation results show that the discrete entropy is 
similar to the K  entropy with a constant offset. In other words, 
homogenization improves the information entropy of the QPSM 
while maintaining the chaos properties unchanged. 

The construction and optimization methods of chaotic system 
proposed in this paper can be used to generate noise-like 
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sequences, which can be applied to communication and radar 
aeras. 
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